First experimental results of time-of-flight reconstruction on an LSO PET scanner.
نویسندگان
چکیده
Time-of-flight (TOF) positron emission tomography (PET) was studied and preliminarily developed in the 1980s, but the lack of a scintillator able to deliver at the same time proper time resolution and stopping power has prevented this technique from becoming widespread and commercially available. With the introduction of LSO in PET, TOF is now a feasible option. TOF reconstruction has been implemented in the CPS Hi-Rez PET scanner, both with 2D filtered-back-projection (FBP2D) and 3D ordered subset expectation maximization (OSEM3D). A new procedure has been introduced in the time alignment to compensate for the limited digital time resolution of the present electronics. A preliminary version of scatter correction for TOF has been devised and is presented. The measured time resolution of 1.2 ns (FWHM) allowed for a signal-to-noise ratio increase of about 50% in phantoms of about 40 cm transaxial size, or a gain larger than 2 in noise equivalent counts (NEC). TOF reconstruction has shown the expected improvement in SNR, both in simulation and experimental data. First experimental results show two improvements of TOF reconstruction over conventional (non-TOF) reconstruction: a lower noise level and a better capability to resolve structures deep inside large objects.
منابع مشابه
An overview of clinical PET/CT
This article is intended to provide an overview of various aspects of clinical PET/CT. These include discussions of: (i) Important areas of clinical application; (ii) Opportunities in clinical research; (iii) Scanner and operating-mode considerations (e.g. BGO vs. LSO, LYSO or GSO scanners, 2D vs. 3D imaging). (iv) Study-specific considerations (e.g. patient preparation and positioning is...
متن کاملStudy of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness.
The aim of this study is to understand the trade-off between crystal thickness and scanner axial field-of-view FOV (AFOV) for clinical PET imaging. Clinical scanner design has evolved towards 20-25 mm thick crystals and 16-22 cm long scanner AFOV, as well as time-of-flight (TOF) imaging. While Monte Carlo studies demonstrate that longer AFOV and thicker crystals will lead to higher scanner sens...
متن کاملImage quality assessment of LaBr3-based whole-body 3D PET scanners: a Monte Carlo evaluation.
The main thrust for this work is the investigation and design of a whole-body PET scanner based on new lanthanum bromide scintillators. We use Monte Carlo simulations to generate data for a 3D PET scanner based on LaBr3 detectors, and to assess the count-rate capability and the reconstructed image quality of phantoms with hot and cold spheres using contrast and noise parameters. Previously we h...
متن کاملPerformance comparison of four commercial GE discovery PET/CT scanners: A monte carlo study using GATE
Combined PET/CT scanners now play a major role in medicine for in vivo imaging in oncology, cardiology, neurology, and psychiatry. As the performance of a scanner depends not only on the scintillating material but also on the scanner design, with regards to the advent of newer scanners, there is a need to optimize acquisition protocols as well as to compare scanner ...
متن کاملLutetium oxyorthosilicate (LSO) intrinsic activity correction and minimal detectable target activity study for SPECT imaging with a LSO-based animal PET scanner.
This work is part of a feasibility study to develop SPECT imaging capability on a lutetium oxyorthosilicate (LSO) based animal PET system. The SPECT acquisition was enabled by inserting a collimator assembly inside the detector ring and acquiring data in singles mode. The same LSO detectors were used for both PET and SPECT imaging. The intrinsic radioactivity of (176)Lu in the LSO crystals, how...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 50 19 شماره
صفحات -
تاریخ انتشار 2005